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Abstract1

Remote work’s potential as a sustainable mobility solution has garnered attention, particularly due2

to its widespread adoption during the COVID-19 pandemic. Our study systematically examines the3

impacts of remote work on vehicle-miles traveled (VMT) and transit ridership in the United States4

from April 2020 to October 2022. We find that using the pre-pandemic levels as the baselines, a5

mere 1% decrease in on-site workers corresponds to a 0.99% reduction in state-level VMT and a6

2.26% drop in Metropolitan Statistical Area (MSA)-level transit ridership. Notably, a 10% decrease7

in on-site workers compared to the pre-pandemic level could yield a consequential annual reduction8

of 191.8 million metric tons (10%) in CO2 emissions from the transportation sector, alongside a9

substantial $3.7 billion (26.7%) annual loss in transit fare revenues within the contiguous US. These10

findings offer policymakers crucial insights into how different remote work policies can impact urban11

transport and environmental sustainability as remote work continues to persist.12
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Decarbonizing the transportation sector is critical for mitigating climate change, as transportation13

accounts for 35.9% of energy-related carbon dioxide emissions in the United States [1]. To cut14

transportation-related greenhouse gas (GHG) emissions, studies acknowledge the need to promote15

both technological innovations and sustainable behavior changes [2, 3, 4, 5]. Among demand-side16

solutions, remote work has gained attention as a sustainable mobility tool in the past decades.17

By allowing employees to work from home, in satellite telecenters, or other locations, remote work18

was initially proposed to provide more flexibility to employees regarding work locations and work19

hours [6, 7, 8]. Advocates for the remote work arrangement usually highlight its utilities of cutting20

carbon emissions by reducing the number of commuting trips [9, 10, 8], saving travel time through21

alleviating traffic congestion [11, 12], and in some cases promoting the usage of sustainable travel22

modes such as public transit [13, 14].23

Despite theoretical advantages, the actual impact of remote work on urban mobility remains24

uncertain and sometimes contradictory in existing literature. Previous studies have shown a wide25

range of estimated impacts on vehicle-miles traveled (VMT) associated with remote work, ranging26

from a 20% reduction to a 3.9% increase when teleworking one day a week in pre-pandemic settings27

[6]. These disparities can be attributed to variations in measuring remote work, utilizing diverse28

datasets, and the intricate mechanisms through which remote work influences motorized travel.29

Regarding the mechanisms, on one hand, remote work has the potential to reduce VMT by30

eliminating or reducing employees’ commuting needs and by cutting down vehicle travel time, par-31

ticularly during peak hours, thus reducing carbon emissions [9, 10, 15]. On the other hand, it can32

also potentially lead to an increase in VMT [16, 17]. For instance, remote workers may engage in33

more non-work travel due to the flexibility of their work schedule and location [18, 19]. Addition-34

ally, they may choose to live further away from their workplace, resulting in longer commutes on35

non-remote working days [9, 20].36

The effect of remote work on public transit is also uncertain: though some literature suggested37

that remote work can increase public transit usage [13, 14], others found that remote work actually38

reduced transit usage through reducing the commuting needs [21, 22]. Despite the controversy in39

previous research findings, we need to note that identifying the pre-pandemic impacts of remote40

work on urban mobility itself was challenging, because remote work was a very limited practice at41

that time. In 2017-2018, just 8% of Americans worked from home for at least one day per week,42

as reported by the American Time Use Survey [23, 24]. In 2019, the American Community Survey43

revealed that only about 5.7% of workers in the United States primarily worked from home [25].44

As a result, the impacts remote work imposed on the overall urban transport system were marginal45

and unstable, making them difficult to identify in practice.46

The COVID-19 pandemic has had a profound impact on remote work trends [26]. It has com-47

pelled millions of Americans to adapt to working from home (WFH), with a significant 37% of the48

population working remotely full-time as of April 2020 [27]. While the pandemic health emergency49

is reaching its conclusion [28], many companies have recognized the benefits and and are embrac-50

ing remote work policies for the long term. This decision allows employees the flexibility to work51

remotely either part-time or full-time. Data from May 2023 indicates that approximately 20.1% of52
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employed Americans WFH for at least one day per week [29]. With remote work likely to remain a53

popular working arrangement in the post-pandemic era, it becomes crucial to systematically eval-54

uate the effects of remote work on urban mobility. Such an analysis can provide valuable insights55

for governments seeking to reduce VMT, alleviate congestion, and mitigate air pollution in the long56

run. It will also help employers and employees understand how their remote work policies and57

preferences collectively influence the urban transport system and environmental sustainability in58

the future.59

Using a combination of anonymized and aggregated workplace visitation data along with nation-60

wide panel data on VMT and public transit, we conducted a comprehensive analysis to investigate61

the impacts of remote work on VMT and transit ridership across the United States following the62

COVID-19 pandemic. To address concerns of endogeneity, we employed an instrumental variable63

(IV) approach and investigated how these effects varied across different spatial and temporal dimen-64

sions. Furthermore, based on the estimated effects of remote work on VMT and transit ridership,65

we quantified the corresponding reductions in carbon dioxide (CO2) emissions and transit fare rev-66

enues at both national and regional levels. By doing so, our study aims to provide valuable insights67

into the environmental implications of advocating remote work as a strategy for mitigating on-road68

GHG emissions. It is noteworthy that our analysis spans the period from April 2020 to October69

2022, during which the effects of remote work on VMT and transit ridership may have been uniquely70

shaped by the COVID-19 pandemic. During the pandemic period, the induced trips may have been71

restricted, potentially introducing an upward bias in estimating the net impact of remote work on72

VMT and transit ridership. Hence, we recognize the need to further examine the impacts of remote73

work on urban mobility in the post-pandemic era.74

Results75

To examine the impact of remote work on VMT and transit ridership in the United States from76

April 2020 to October 2022, we adopt a unique identification strategy based on the heterogeneity77

in the recovery rate of onsite workers. The recovery rate of onsite workers serves as a proxy for the78

inverse of remote work prevalence, which is measured by the percentage of onsite workers compared79

to pre-pandemic levels. In this study, we examine the impact of remote work on two key urban80

mobility measures: (1) VMT in 48 states and the District of Columbia, and (2) transit ridership in81

217 Metropolitan Statistical Areas (MSAs).82

Based on the panel datasets that offer broad spatiotemporal coverage, we first employ the fixed-83

effect regressions, where the dependent variables are the recovery rates of VMT and transit ridership,84

measured by the percentage of VMT and transit ridership compared to their respective values in85

the same month of 2019. By including the regional and month fixed effects in the models, we can86

effectively control for the region- and time-specific variations. In addition to the fixed effects, we87

account for other relevant covariates, including GDP per capita, unemployment rate, the recovery88

rate of transit services, transit fares, population size, net migration rate, reopening status, reported89

COVID cases per capita, and vaccination rate. These covariates help to control for various factors90

3



Pr
e-p

rin
t

that could potentially impact the fluctuations in VMT and transit ridership throughout the duration91

of the study. The primary independent variable of focus is the recovery rate of onsite workers.92

However, fixed-effects models have limitations, such as omitted variable bias and reverse causal-93

ity. Furthermore, using the percentage of onsite workers as a proxy for remote work may not94

accurately capture the full extent of remote work, particularly for individuals who may remain95

offsite due to job loss. To address these issues simultaneously and refine our analysis, we adopted96

an instrumental variable approach using two-stage least squares (2SLS) estimation. Specifically, we97

used the percentage of suitable remote workers in each state/MSA for each month as our instrument.98

This instrument was derived by considering industry-specific percentages of suitable remote workers99

and variations in employment levels across different industries in each state/MSA. By employing100

this instrument, we effectively removed variations in the endogenous predictor (i.e., the percentage101

of onsite workers compared to pre-pandemic levels) unrelated to remote work, including changes due102

to shifts in unemployment rates. Additionally, we examine the spatial heterogeneity and temporal103

evolution of the causal effects, and estimate the corresponding marginal effect of remote work on the104

CO2 emissions in each state and that on transit fare revenues in each MSA, yielding the following105

major findings:106

1. Compared to pre-pandemic levels, a 1% increase in the number of onsite workers is associated107

with a 0.99% increase in state-level VMT and a 2.26% increase in MSA-level transit ridership.108

On a regional scale, when a state or an MSA has a higher percentage of transit commuters,109

the impact of remote work on VMT tends to be smaller, while its effect on transit ridership110

tends to be larger.111

2. A 10% decrease in the number of onsite workers compared to pre-pandemic levels could lead112

to a reduction of 191.8 million metric tons of CO2 emissions related to VMT, which represents113

a 10% annual reduction in CO2 emissions from the transportation sector in the contiguous114

US. Additionally, this decrease in onsite workers may result in a $3.7 billion or 26.7% annual115

loss in transit fare revenues.116

3. Temporally, the impacts of remote work on the recovery rates of VMT and transit ridership117

display remarkable temporal consistency over the entire study period.118

Remote work highly correlated with VMT and transit ridership119

We begin by examining the non-causal correlations between remote work and both VMT and transit120

ridership, which provide suggestive evidence of the negative impact of remote work on the recovery121

of these two mobility indicators. We present recovery rates of VMT and transit ridership in relation122

to the recovery rate of onsite workers, as shown in Figure 1(a)-(d). These figures depict aggregated123

samples at state/MSA and month-year levels.124

These four subfigures reveal significantly positive correlation coefficients between the recovery125

rate of onsite workers and the recovery rates of VMT and transit ridership. Figures 1(a) and (b)126

clearly illustrate positive associations between onsite workers’ recovery rates and both VMT and127
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transit ridership at the state/MSA level. Furthermore, these figures suggest that states and MSAs128

with a higher percentage of transit commuters tend to show a lower recovery rate of onsite workers.129

The month-year level aggregation in Figures 1(c) and (d) reveals even more pronounced cor-130

relations between the recovery rate of remote work and the recovery rates of VMT and transit131

ridership. The slopes of the best-fit lines in these figures exceed 1, indicating stronger relation-132

ships at the month-year level. Additionally, as the pandemic progressed, we observed simultaneous133

increases in the recovery rates of onsite workers, VMT, and transit ridership.134

To further our analysis, we employ a set of fixed-effect models and 2SLS models to estimate135

the causal effects of remote work on VMT and transit ridership, with the results presented in the136

following sections.137

Causal effect of remote work on VMT138

Columns (1) and (2) of Table 1 present results using ordinary least square (OLS) and fixed-effect139

modeling to investigate the influence of remote work on VMT. Both models reveal a positive cor-140

relation between the recovery rate of onsite workers and VMT recovery, confirming the trends141

observed in Fig. 1. The fixed-effect models reveal a more pronounced impact of remote work,142

with a 1-percentage-point increase in onsite worker recovery rate associated with a substantial 0.82-143

percentage-point increase in the VMT recovery rate. Furthermore, the fixed-effect model (Column144

2), after accounting for state fixed effects and month fixed effects, identifies covariates like state145

reopening status, transit service recovery rate, vaccination rate, and population size as positively146

correlated with VMT recovery, while unemployment rate and COVID-19 cases show negative correla-147

tions. These findings remain robust across alternative specifications, as confirmed by our sensitivity148

tests, which show that excluding GDP per capita or unemployment rate does not qualitatively affect149

the inference (Supplementary Section 2.1 and 2.2).150

Next, in Table 2, we present the results of the 2SLS estimation, with the model statistics used151

to assess the model’s validity presented in Supplementary Section 2.3. The 2SLS results suggest152

that a 1-percentage-point increase in the recovery rate of onsite workers is associated with a 0.99-153

percentage-point increase in the VMT recovery rate (Column 1). This estimate is slightly larger than154

that derived from the fixed-effect model (0.82-percentage-point increase, as indicated in Column 2155

of Table 1). The smaller estimate in the fixed-effect model may be attributed to the issue of reverse156

causality, as an increase in VMT and road congestion may lead people to opt for remote work as a157

means to avoid commuting [30], thereby attenuating the estimated effect of remote work on VMT158

reduction.159

Given that the graphical findings in Fig. 1 suggest that the percentage of transit commuters can160

influence the relationship between the recovery rate of onsite workers and the recovery rates of VMT161

and transit ridership, we introduce an interaction term between the recovery rate of onsite workers162

and the log-transformed percentage of transit commuters. Our analysis reveals that the magnitude163

of the causal effect of remote work on VMT is diminished in states with higher percentages of transit164
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commuters (Column 2 of Table 2). Furthermore, we examine regional heterogeneity in the causal165

effect across states (Methods). Column 3 of Table 2 illustrates the causal effect of the recovery rate166

of onsite workers by geographical division. The result shows that the effect is consistently significant167

across all geographical divisions, with variations in magnitude, such as Pacific and Mountain regions168

exhibiting effects below the average, and others exhibiting effects above the average.169

Our study’s findings align with the majority of pre-pandemic research on remote work and VMT170

which generally indicates a negative association, signifying reduced VMT. Notably, the effect sizes171

observed in our study tend to be larger than those in previous research [6], likely because the impact172

on VMT was weak and unstable due to the limited adoption of remote work before the pandemic.173

However, our results differ from certain pre-pandemic studies that reported a net increase in VMT174

associated with remote work [31, 32, 14]. This net increase occurs because the travel-reduction effect175

is outweighed by the travel-inducing effect, where remote workers may engage in more non-work-176

related trips due to schedule flexibility or opt for longer commutes due to workplace relocation.177

[31, 32, 14]. It’s essential to highlight that our study does not distinguish between the travel178

reduction and travel-inducing effects of remote work; instead, it quantifies the net impact that179

considers both aspects. Our 2SLS analysis demonstrates a significant negative net effect, suggesting180

that, during our study period, the reduction in travel associated with remote work outweighs any181

travel-inducing effects.182

Causal effect of remote work on transit ridership183

Among the 217 MSAs included in the transit ridership estimations, our 2SLS results (Column184

4 in Table 2) indicate that a 1-percentage-point increase in the recovery rate of onsite workers185

corresponds to a 2.26-percentage-point increase in transit ridership. In comparison, the fixed-effect186

model yields a smaller estimate (i.e., 0.54 as indicated by Column 4 in Table 1), suggesting that187

there might be omitted variables exerting a directional impact on transit ridership that differs from188

the effect of the recovery rates of onsite workers. One possible omitted variable is the demand189

for ride-hailing services. Notably, both the number of ride-hailing users and the number of onsite190

workers exhibit increasing trends during our study period [33, 34]. Since the rising demand for ride-191

hailing services is likely to partially offset the transit demand resulting from people’s return to the192

workplace, the omission of ride-hailing demand in our fixed-effect models might underestimate the193

effect of onsite workers on transit ridership. In contrast to the VMT estimation result, we observe194

that the effect of remote work on transit ridership recovery increases with the percentage of transit195

commuters (Column 5 in Table 2). Across geographical divisions, the effect remains significant in196

all nine geographical divisions. Notably, the West North Central and New England regions exhibit197

the most substantial marginal effects, surpassing the average marginal effect of 2.259, while other198

divisions are associated with effects below the average marginal impact.199

Our finding of remote work reducing transit ridership aligns with certain pre-pandemic studies200

[22, 21, 35], while contradicting others [14, 20, 15]. This discrepancy may be attributed to differences201
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in how remote work is measured, variations in data structures, and modeling techniques. However,202

our fixed-effect and 2SLS results are directionally consistent with a pre-pandemic study that utilized203

a dataset with a similar structure and geographical coverage to ours. The aforementioned study204

found that an additional percentage of remote workers was associated with a 0.76% reduction in205

transit ridership in the U.S. between 2012 and 2018 using fixed-effect estimation [21].206

Determinants of onsite workers’ recovery rate207

Table 3 presents the first-stage results of the IV regression, where the recovery rate of onsite workers208

is regressed on the percentage of suitable remote workers (the IV), along with the covariates and209

fixed effects. The significantly negative coefficients of the IV indicate that a higher percentage of210

suitable remote workers is associated with a lower recovery rate of onsite workers, even after ac-211

counting for factors such as reopening stimulus effects, GDP per capita, unemployment rate, transit212

service recovery trends, transit fares, vaccination rates, and population changes. Specifically, a 1-213

percentage-point increase in the percentage of suitable remote workers is associated with a decrease214

of 2.28 percentage points in the recovery rate of onsite workers across the 48 states and District of215

Columbia, and a decrease of 0.24 percentage points across the 217 MSAs. This disparity can be216

attributed to the larger geographic area and population coverage of states compared to the specific217

urban focus of MSAs. State-level analysis combines remote work behavior across diverse MSAs, re-218

sulting in a more homogeneous effect, while MSA-level analysis captures localized dynamics, leading219

to greater heterogeneity in the effects of the IV on the recovery rate of onsite workers. Following220

the main 2SLS estimations, we conducted robustness tests on our 2SLS models, including falsifi-221

cation tests, variations in the study period, and the use of an alternative metric for remote work222

(detailed in Supplementary Section 3). The results not only confirm the validity of our results but223

also strengthen the robustness of our conclusions.224

Temporal variation of the effect of remote work225

To analyze the temporal evolution of the causal relationship between the recovery rate of onsite226

workers and urban mobility, we estimate the quarterly effects for each mobility measure. As depicted227

in Figure 2, our results reveal that the effects on the recovery rates of VMT and transit ridership228

remain not only statistically significant but also remarkably stable throughout the study period229

(detailed results in Supplementary Tables S10 and S11).230

Specifically, the effect on transit ridership exhibits a consistent stability with a slight increasing231

trend over time. Meanwhile, the effect on VMT recovery displays some seasonal fluctuations. How-232

ever, after accounting for these seasonal trends, the effect on VMT remains overall stable with a233

slight upward trajectory. These persistent patterns in both transit ridership and VMT underscore234

the robustness of the observed effect over time and suggest its potential for long-term significance.235
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Effects on on-road CO2 emissions and transit fare revenues236

To contextualize the effects of remote work on VMT and transit, we estimate the reduction in237

CO2 emissions associated with the effect of remote work on VMT and the reduction in transit fare238

revenue associated with the effect of remote work on transit ridership. On a national basis, we239

estimate that a 10% decrease in the number of onsite workers compared to pre-pandemic levels will240

reduce the annual total VMT-related CO2 emission by 191.8 million metric tons. For reference,241

the annual energy-related CO2 emissions from the transportation sector in the contiguous U.S. is242

1915.26 million metric tons in 2019 [1]. Therefore, our finding suggests that a 10% decrease in243

the number of onsite workers compared to pre-pandemic levels could potentially result in a 10%244

reduction in CO2 emissions from the transportation sector in the contiguous U.S., using the 2019245

level as the baseline (Methods). We also find that the marginal effect of remote work on VMT-246

related CO2 reductions varies substantially across states (Fig. 3a). For example, a 1% decrease in247

the number of onsite workers compared to pre-pandemic levels would lead to monthly reductions248

of 176.1 thousand metric tons versus 47.5 thousand metric tons in CO2 emissions in Texas versus249

New York State. The difference in CO2 emissions across states is due to three factors: the marginal250

effect of remote work on VMT varying with the percentage of transit commuters in each state (the251

effect for each state is reported in Supplementary Fig. S5), the pre-pandemic (2019) VMT levels of252

each state, and the state-specific emission factors in 2020-2021 (Methods).253

Increasing the remote working level would also lead to a considerable loss in public transit fare254

revenues, which may impact the financial sustainability of the transit agencies and thus poses a255

challenge for transit agencies to deliver transit services that are responsive to people’s travel needs.256

Across the 217 MSAs, we estimate that a 10% decrease in the number of onsite workers compared257

to pre-pandemic levels would lead to an annual loss of 2.4 billion transit trips and $3.7 billion in fare258

revenue, which are roughly 26.7% of the annual transit ridership and fare revenue in 2019 (Methods).259

Regionally, the marginal effects of remote work on transit fare revenue vary widely across MSAs260

(Fig. 3b). The majority of the transit fare revenue loss occurs in the New York MSA, where a261

1-percentage-point decrease in the recovery rate of onsite workers would result in $18.16 million262

loss in transit fare revenue per month, which accounts for 59.46% of the total monthly transit fare263

revenue loss in all 217 MSAs.264

Discussion265

The advent of remote work has brought about transformative changes in work and lifestyle, with266

profound implications for urban mobility. Our research has shown that remote work has led to267

significant reductions in VMT and transit ridership since the onset of the COVID-19 pandemic.268

These findings are consistent with numerous pre-pandemic studies [6, 9, 10, 8, 11, 12]. Importantly,269

the impact of remote work on VMT and transit ridership persisted from April 2020 to October 2022,270

with the magnitude of these effects showing relative stability over the course of the study. This271

enduring pattern underscores the robustness of our estimated impact and suggests their potential272
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long-term implications.273

The widespread adoption of remote work offers significant benefits in terms of on-road carbon274

emissions. Our research emphasizes the effectiveness of remote work policies in mitigating on-road275

CO2 emissions, complementing existing measures such as carbon tax and road pricing. Notably, or-276

ganizations worldwide have embraced remote work and are committed to maintaining these options277

in the future [36, 37]. This persistent trend is poised to generate enduring reductions in on-road278

carbon emissions, underscoring the need for companies and policymakers to recognize the environ-279

mental advantages of remote work and for governments to consider the incorporation of remote280

work strategies into their initiatives for transportation decarbonization.281

However, despite the positive impact of remote work on on-road CO2 emissions, our research282

also reveals a significant challenge related to transit fare revenue loss due to reduced transit rider-283

ship. Although transit agencies have received assistance through federal funding since March 2020284

[38, 39, 40], persistently low ridership poses financial difficulties for transit agencies. This situation285

raises concerns about their long-term financial sustainability and their ability to operate indepen-286

dently from federal subsidies [41, 42, 43]. To address this challenge, transit agencies must focus on287

enhancing customer attraction and revenue generation while promoting sustainable urban growth288

through viable alternatives to car-centric and fuel-inefficient development. Given that remote work289

often involves home-based flexible trips, transit agencies can invest in on-demand services, flexible290

routing, and non-commuting trips in residential areas, thereby diversifying their service offerings be-291

yond traditional fixed-route services primarily designed for regular commuting in the pre-pandemic292

era.293

This study also paves the way for future research endeavors. Firstly, while our analysis covers294

the period from April 2020 to October 2022 due to data availability, further research is necessary295

to assess the long-term impacts of remote work on urban mobility, considering potential behavioral296

changes and evolving work dynamics in the post-pandemic era. Secondly, previous studies have297

highlighted that work-related travel savings resulting from remote work may stimulate other types298

of travel, potentially offsetting the reductions achieved by avoiding commuting [18, 19, 16, 17].299

While our study measures the net effect of remote work on overall travel, additional investigations300

are needed to quantify the impacts of remote work on work-related travel and other types of travel301

separately. Lastly, although our study indirectly measures the extent of remote work using the302

recovery rate of onsite workers from Google Community Mobility Reports, future research should303

consider direct measurements of remote work. Additionally, it’s crucial to acknowledge that Google304

Community Mobility Reports rely on data from users who have enabled Location History, possibly305

introducing bias toward individuals with access to smartphones and technology. While our data306

robustly represents remote work based on a comparison with a national remote work survey dataset307

(Supplementary Section 1.3), exploring other datasets with greater representativeness is advisable308

for future research.309
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Methods310

Data.311

The recovery rate of onsite workers is determined using data obtained from the Google Commu-312

nity Mobility Reports [44]. These reports provide information on the percentage change in visitors313

to workplaces compared to a baseline, which we consider as the recovery rate of onsite workers, at314

the county level. The baseline represents the median value observed during the 5-week period from315

January 3 to February 6, 2020, specifically for the corresponding day of the week. It’s important to316

note that this data is collected by Google from users who have enabled Location History, which may317

introduce limitations in representativeness as it does not account for individuals who are not Google318

users or Google users who did not enable Location History during the study period. To assess data319

representativeness, we conducted a comparison of our data with the remote working indicator ob-320

tained from a national remote work survey dataset, specifically the monthly U.S. Survey of Working321

Arrangements and Attitudes (SWAA). The results reveal a strong negative correlation between the322

recovery rate of onsite workers in our sample and the remote work measure in the SWAA data323

when aggregated to the state and month-year level, with correlation coefficients of -0.83 and -0.88,324

respectively. Our data validation results affirm the robust representation of our indicator regarding325

the extent of remote work (details in Supplementary Section 1.3).326

To calculate the monthly recovery rate of onsite workers for a state or MSA, we average the327

recovery rates of all counties within that state/MSA. The averaging is weighted by the employment328

level in each county for the corresponding month, which is obtained from the US Bureau of Labor329

Statistics [45]. The available data spans from April 2020 to October 2022, which serves as our study330

period.331

The monthly state-level VMT data are collected from the U.S. Federal Highway Administrations332

(FHWA) [46], which report the vehicle miles traveled on all roads for 50 US states and the District333

of Columbia. We focus on the contiguous U.S. which includes 48 states and the District of Columbia334

from April 2020 to October 2022.335

Public transit data comes from the National Transit Database [47], which contains panel data336

of transit profiles and summaries at an agency-month level, reported separately by mode. We337

include only "full reporters" that regularly report their ridership monthly, and exclude "reduced338

reporters"/"small systems reporters" (agencies operating fewer than 30 vehicles in maximum service)339

and "rural reporters" (agencies not reporting data to the monthly ridership module). For each340

agency, we include bus modes (bus, bus rapid transit, commuter bus, and trolleybus) and rail341

modes (light rail, heavy rail, commuter rail, etc.), and exclude demand-responsive transit and342

all other modes. We retained only agencies that provided continuous service from January 2019 to343

October 2022, covering 97.5% of all transit vehicle revenue miles provided by agencies that operated344

throughout 2019. The resulting data covers 217 MSAs from April 2020 to October 2022.345

Transit ridership and transit service supply are calculated as the total number of unlinked pas-346

senger trips and the total vehicle revenue miles (VRM) for all operators within an MSA, respectively.347

The recovery rates for transit ridership and service supply are calculated by comparing the transit348
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ridership and service supply in a specific month to the values in the same month of 2019. Yearly av-349

erage transit fare data is also sourced from the National Transit Database. To calculate this average350

fare, we first sum the annual unlinked passenger trips (i.e., transit ridership) and the annual fare351

revenue for all operators within an MSA. Subsequently, we compute the average fare by dividing352

the annual fare revenue by the annual unlinked passenger trips.353

Data on the percentage of suitable remote workers (SW ), serving as the instrumental variable354

(IV) in our two-stage least squares (2SLS) regressions, is sourced from the US Bureau of Labor355

Statistics. This variable is derived using two statistics: 1) the industry-specific percentage of suitable356

remote workers obtained from a national employment survey dataset, and 2) the time-varying357

employment by industry in each state/MSA.358

To calculate SWit, which represents the percentage of suitable remote workers for state or MSA359

i at time t, we take the weighted average across all industries in that region. More specifically, we360

use the formula SWit =
∑

j e
t
ijpij/

∑
ij e

t
ij . Here, pij refers to the estimated percentage of suitable361

remote workers for industry type j in region i, which is obtained from the May 2019 Occupational362

Employment Statistics survey [48]. etij represents the employment level in region i for industry j at363

time t, which is extracted from the quarterly census of employment and wages published by the US364

Bureau of Labor Statistics [45].365

The reopening status of a state refers to the lifting of social distancing measures, such as imposing366

mandatory stay-at-home orders, closing or limiting capacity at non-essential businesses, restaurants,367

and bars, as well as limiting large gatherings [49]. A value of 1 is assigned if the state had reopened368

by the end of the month, and 0 if it had not. This information is sourced from the Kaiser Family369

Foundation [49], which has been tracking the reopening status of each state on a weekly basis since370

the beginning of the pandemic. Each MSA is mapped to a state which has the most population of371

that MSA.372

The GDP data utilized in this study are sourced from the Bureau of Economic Analysis. As373

the GDP data is reported on a quarterly basis, we calculate the average monthly GDP data per374

quarter per capita, which serves as our independent variable. For the MSA-based analysis, since375

the quarterly data is available only at the state level, we represent each MSA by the state with the376

highest population within that MSA. To capture the monthly unemployment rates, data for each377

state and MSA are collected from the U.S. Bureau of Labor Statistics and retrieved from Federal378

Reserve Economic Data (FRED).379

Previous research has indicated that individuals may opt to relocate to more distant locations380

when engaging in remote work, leading to potential changes in their travel patterns [9, 20]. To381

address this phenomenon, we incorporate the net migration rate as an independent variable in our382

analysis. The net migration rate for region (state or MSA) i during month-year t is calculated as:383

Net migration rate t
i = (Gross inflow t

i −Gross outflow t
i)/Populationi [1]384

Gross in- and outflows refer to the total number of individuals moving in and out of the region385

i during month-year t. The raw data is sourced from change-of-address records provided by the386

United States Postal Service (USPS)[50], which document these migrations at the ZIP code level387
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on a monthly basis. We then aggregate this data to the state or MSA level. Populationi refers to388

the total population in region i.389

The daily number of new COVID-19 cases at the county level was sourced from the New York390

Times [51], and we aggregated this data to the region-month level for our analysis. To account for391

population differences, we utilized the number of new cases per capita as an independent variable in392

our regressions. Information on vaccination rates for each state was obtained from the Centers for393

Disease Control and Prevention (CDC) [52]. It is worth noting that vaccine effectiveness diminishes394

over time. A meta-analysis of studies on COVID-19 vaccination effectiveness [53] found that after395

any primary vaccination cycle, the effectiveness against symptomatic disease dropped to less than396

10% for Omicron and less than 50% for Delta. To capture the temporal variations in vaccine effects,397

we incorporated three variables: vaccinations per person in the past 3 months, vaccinations over398

the past 3-6 months, and vaccinations over the past 6-9 months.399

The annual population data for the years 2020 to 2022 for each state and MSA is derived from400

the U.S. Census Bureau [54, 55]. Information on the percentage of transit commuters in each state401

and MSA is sourced from the 2021 American Community Survey 5-year estimates.402

We have compiled the essential information on key variables, including their measurement units,403

sources, and original spatiotemporal granularity, in Supplementary Section 1.1. Descriptive statistics404

of the variables are provided in Supplementary Section 1.2. Data processing utilized Python version405

3.7.4 and R version 3.6.3, while modeling was performed using R version 3.6.3.406

Fixed-effect model specification. The main goal of this study is to analyze how the recovery407

rate of onsite workers impacts the recovery of VMT and transit ridership. To achieve this goal, we408

first apply the following fixed-effect models:409

Yit = β0 + β1RWit + β2Controlsit + α1i + α1m + υit [2]410

where Yit denotes the recovery rate of VMT for state i at time t or the recovery rate of transit411

ridership for MSA i at time t, which are calculated as the percentages of VMT and transit rider-412

ship compared to the values in the same month of 2019. RWit denotes the recovery rate of onsite413

workers for state/MSA i at time t, which is calculated as the percentage of the number of workplace414

visitors at time t compared with its pre-pandemic level. Controlsit is a set of control variables cor-415

responding to state/MSA i and time t, including GDP per capita, unemployment rate, the recovery416

rate of transit services, transit fares, population size, net migration rate, reopening status, reported417

COVID cases per capita, and vaccination rate. Most variables can be aggregated to the monthly418

level. However, transit fares and population size are reported annually, thus we employ data from419

the corresponding year. For GDP per capita, which is reported quarterly, we calculate and employ420

the average monthly GDP per capita for the corresponding quarter. β0 denotes the intercept, β1 is421

the coefficient of RWit, and β2 represents the coefficients for the control variables. α1i denotes the422

regional fixed effects that control for time-invariant characteristics at the state or MSA level. α1m423

denotes the month fixed effects that account for the variation by month. υit is the error term.424

425
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2SLS specification. To solve the endogeneity problem of RWit and estimate the causal effect of426

the recovery rate of onsite workers on transit ridership recovery, we apply a 2SLS estimation. In the427

first stage of the 2SLS model, we estimate the recovery rate of onsite workers using the following428

formula:429

RWit = γ0 + γ1SWit + γ2Controlsit + α2i + α2m + ϵit [3]430

where SWit represents the percentage of suitable remote workers in region i at time t. γ0 denotes431

the intercept, γ1 is the coefficient of SWit, and γ2 represents the coefficients for the control variables.432

α2i and α2m are the regional fixed effects and the month fixed effects, and ϵit is the error term.433

We include the same set of control variables, regional and month fixed effects as in the fixed-effect434

model (equation 2). The second stage of the 2SLS follows the formula:435

Yit = β0 + β1R̂Wit + β2Controlsit + α1i + α1m + υit [4]436

where R̂Wit is the predicted value of the recovery rate of onsite workers estimated from Equation437

3. Controlsit is the same set of control variables as in Equation 2. α1i and α1m denote the regional438

fixed effects and the month fixed effects, and υit is the error term. For all the 2SLS regressions, we439

conduct robustness tests in Supplementary Section 3.440

441

Heterogeneity of the causal effect by geographical divisions To estimate the heterogeneity442

of the effect across geographical divisions, we re-estimate the second stage model using the following443

formula:444

Yit = β0 +
∑
m

θm ∗ I {i ∈ Dm} ∗ R̂Wit + β2Controlsit + α1i + α1m + υit [5]445

where Dm indicates a specific geographical divisions. There are nine divisions in the United States,446

namely New England, Middle Atlantic, East North Central, West North Central, South Atlantic,447

East South Central, West South Central, Mountain, and Pacific [56]. I {i ∈ Dm} takes value 1 if i448

is in Dm and 0 if not. θm denotes the division-specific effect. Other parts of the model remain the449

same as in Equation 4.450

451

Effects by the percentage of transit commuters. Theoretically, the influence of remote work452

on both VMT and transit ridership depends on the interplay between its impact on people’s travel453

needs and the distribution of residents’ travel modes within a region. To account for these variations,454

we explore how the marginal effect of remote work varies by the percentage of transit commuters455

using the following specification:456

Yit = β0 + ω1 ∗ R̂Wit + ω2 ∗ R̂Wit ∗ log(Zi) + β2Controlsit + α1i + α1m + υit [6]457

where Zi is a key socio-demographic variable for region i. It denotes both the percentage of transit458

commuters in state i for the VMT estimation and the percentage of transit commuters in MSA i for459
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the transit ridership estimation. The region-specific effect of the recovery rate of remote workers on460

Yit in region i is thus represented by ω1 +ω2 ∗ log(Zi). It’s worth mentioning that the state-specific461

percentage of transit commuters is obtained from the 2021 American Community Survey 5-Year462

data, and given that this dataset is cross-sectional and lacks temporal variation, it does not reflect463

the evolving regional travel mode dynamics over our study period. Other parts of the model remain464

the same as in Equation 4.465

466

Temporal heterogeneity of the causal effect. To explore the temporal change in the effect of467

the recovery rate of onsite workers on urban mobility, we estimate the following model:468

Yit = β0 +
∑
k

γk ∗ I {t ∈ Tk} ∗ R̂Wit + β2Controlsit + α1i + α1m + υit [7]469

where Tk indicates the kth year-quarter in the study period, ranging from 2020 Q2 to 2022 Q3, with470

October 2022 categorized into 2022 Q3. I {t ∈ Tk} takes value 1 if t is in Tk and 0 if not. γk denotes471

the year-quarter-specific effect. Other parts of the model remain the same as in Equation 4.472

Measuring the marginal effect of remote work on the VMT-related carbon emissions.473

To quantify the impact of remote work on carbon emissions related to VMT, we begin by calculating474

the state-specific marginal effect of remote work on VMT based on the results of our 2SLS modeling475

(as shown in Equation 6):476

βi = ω̂1 + ω̂2 ∗ log(Zi) [8]477

Here, βi represents the marginal effect for state i, and Zi represents the percentage of transit com-478

muters in state i. We incorporate Zi to determine state-specific marginal effects for two key reasons:479

firstly, in theory, the effects of remote work on VMT and transit ridership in a region depend on480

the interplay between its impact on people’s travel needs and the region’s travel mode distribution,481

with the percentage of transit commuters being a crucial indicator of this distribution. Second,482

our 2SLS modeling results (as demonstrated in Column 2 and 5 of Table 2) indicate significant483

variations in the marginal impacts of remote work on VMT and transit ridership with respect to Zi,484

and the inclusion of Zi improves the model’s R2. Given these considerations, we employ Equation485

4 to represent region-specific marginal effects.486

Subsequently, we compute CO2 emissions per VMT in each state (EFi). This is defined as:487

EFi = Ei/Vi [9]488

where Ei represents the total on-road CO2 emissions during 2020 and 2021 in state i, and Vi489

represents the total VMT in state i during the same period. The choice of the 2020 and 2021490

time period is due to the unavailability of 2022 data on Ei. To obtain the data for Ei, we first491

collected information on the total motor gasoline and diesel fuel consumption for each state during492

2020 and 2021 from the Federal Highway Administration’s annual Highway Statistics Series Table493

MF-21 [57]. Subsequently, we converted this fuel consumption data into CO2 emissions using the494
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following conversion factors: 8.887 kg of CO2 emissions per gallon of gasoline consumed and 10.180495

kg of CO2 emissions per gallon of diesel consumed [58]. Data for Vi was obtained from FHWA’s496

annual Highway Statistics Series Table VM-2 [59], which tracks traffic involving six vehicle types:497

motorcycles, passenger cars, light-duty trucks, buses, single-unit trucks, and multi-unit combination498

trucks [60].499

Finally, we compute the marginal effect of remote work on VMT-related carbon emissions500

(MEit) by multiplying the state-specific marginal effect on VMT by the pre-pandemic (2019) aver-501

age monthly VMT (V 19
i ) and the emission factor:502

MEit = βi ∗ V 19
i ∗ EFi [10]503

It is important to note that fuel consumption per mile traveled varies depending on the type of504

vehicle. In this analysis, due to data limitations, we could only assess the impact of remote work on505

total VMT and apply the average emission factor, without distinguishing the effect on VMT related506

to different types of vehicles. Therefore, the accuracy of our estimated marginal impacts on on-road507

CO2 emissions relies on the assumption that the change in VMT due to remote work maintains a508

similar vehicle type composition as the VMT in 2020 and 2021 for each state. Given that remote509

work could affect the travel of different types of vehicles differently, further analysis could enhance510

accuracy by estimating the marginal effect of remote work on various VMT types and calculating511

the total CO2 impacts using different emission factors for each vehicle type. Additionally, emission512

factors may change over time, so caution should be exercised when applying these results to infer513

the CO2 impact from 2022 onward.514

Measuring the marginal effect of remote work on transit fare revenues. We compute the515

marginal effect of remote work on transit revenue fare for each MSA i, Fi, based on the equation:516

Fi = βi∗Pi. βi represents the marginal effect of remote work on transit ridership estimated from the517

transit ridership 2SLS model (Equation 6): βi = ω̂1+ ω̂2 ∗ log(Zi), where Zi denotes the percentage518

of transit commuters in MSA i. Pi denotes the average fare per passenger trip in MSA i, which is519

obtained from the National Transit Database [47].520

Data availability521

The data used for this study are sourced from publicly available databases, and detailed information522

about each variable’s source can be found in the Data section of the Methods. The compiled datasets523

can be accessed on GitHub at https://github.com/zhengyunhan/remote_work_mobility.524

Code availability525

The code used for conducting the analysis is accessible on GitHub at https://github.com/zhengyunhan/526

remote_work_mobility.527
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Table 1: Impacts of onsite workers’ recovery rate on VMT and transit ridership: OLS and fixed-
effect results

The recovery rates of:

VMT Transit ridership

(1) (2) (3) (4)

Recovery rate of onsite workers 0.652∗∗∗ 0.818∗∗∗ 0.441∗∗∗ 0.544∗∗∗

(0.057) (0.068) (0.032) (0.047)
p = 0.000 p = 0.000 p = 0.000 p = 0.000

Reopening status 1.363∗∗ 1.236∗∗ 8.882∗∗∗ 5.448∗∗∗

(0.667) (0.558) (0.652) (0.533)
p = 0.042 p = 0.027 p = 0.000 p = 0.000

GDP per capita (in thousand dollars) 0.360∗ −0.774 −0.318 12.473∗∗∗

(0.216) (1.892) (0.200) (1.479)
p = 0.096 p = 0.683 p = 0.113 p = 0.000

Unemployment rate −1.010∗∗∗ −0.550∗∗∗ −0.442∗∗∗ 0.064
(0.138) (0.156) (0.071) (0.119)

p = 0.000 p = 0.0005 p = 0.000 p = 0.592
Transit service recovery rate 0.151∗∗∗ 0.078∗∗ 0.410∗∗∗ 0.426∗∗∗

(0.022) (0.031) (0.013) (0.020)
p = 0.000 p = 0.012 p = 0.000 p = 0.000

Transit fare −0.540∗∗∗ 0.949 −5.303∗∗∗ −3.970∗∗∗

(0.173) (0.904) (0.358) (0.712)
p = 0.002 p = 0.294 p = 0.000 p = 0.00000

COVID cases per 1000 people −0.039 −0.105∗∗∗ −0.057∗∗∗ 0.022
(0.025) (0.031) (0.014) (0.016)

p = 0.112 p = 0.001 p = 0.0001 p = 0.169
Vaccinations per person in the past 3 months 3.544∗∗∗ 9.631∗∗∗ −10.753∗∗∗ −10.404∗∗∗

(1.006) (1.027) (0.905) (0.739)
p = 0.0005 p = 0.000 p = 0.000 p = 0.000

Vaccinations per person over the past 3-6 months 0.796 0.388 −4.524∗∗∗ −8.131∗∗∗

(1.064) (0.921) (1.116) (0.900)
p = 0.455 p = 0.674 p = 0.0001 p = 0.000

Vaccinations per person over the past 6-9 months 3.373∗∗∗ 2.810∗∗∗ 2.928∗∗∗ 3.408∗∗∗

(1.154) (1.051) (1.066) (0.882)
p = 0.004 p = 0.008 p = 0.007 p = 0.0002

Net migration rate 0.096 −0.112 1.095∗∗∗ −0.005
(0.407) (0.397) (0.243) (0.183)

p = 0.815 p = 0.779 p = 0.00001 p = 0.977
ln (population in millions) 2.128∗∗∗ 112.127∗∗∗ 0.934∗∗∗ 40.523∗∗∗

(0.234) (30.602) (0.173) (15.607)
p = 0.000 p = 0.0003 p = 0.00000 p = 0.010

State FE NO YES / /
MSA FE / / NO YES
Month FE NO YES NO YES

Observations 1,519 1,519 6,727 6,727
Adjusted R2 0.570 0.739 0.388 0.697

Note: Robust standard errors reported in parentheses, and p-values from two-sided t-tests are listed under standard
errors. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2: Impacts of onsite workers’ recovery rate on VMT and transit ridership: 2SLS results

The recovery rates of:

VMT Transit ridership

(1) (2) (3) (4) (5) (6)

Recovery rate of onsite workers 0.987∗∗∗ 1.161∗∗∗ 2.259∗∗∗ 2.025∗∗∗

(0.192) (0.195) (0.374) (0.374)
p = 0.00000 p = 0.000 p = 0.000 p = 0.00000

Recovery rate of onsite workers × log (percentage of transit commuters) −0.113∗∗∗ 0.259∗∗∗

(0.035) (0.028)
p = 0.002 p = 0.000

Marginal effects of "the recovery rate of onsite workers" by geographical division:

New England 1.126∗∗∗ 2.582∗∗∗

(0.207) (0.387)
p = 0.00000 p = 0.000

Middle Atlantic 1.009∗∗∗ 2.238∗∗∗

(0.226) (0.386)
p = 0.00001 p = 0.000

East North Central 1.099∗∗∗ 1.928∗∗∗

(0.232) (0.381)
p = 0.00001 p = 0.00000

West North Central 1.151∗∗∗ 2.616∗∗∗

(0.206) (0.385)
p = 0.00000 p = 0.000

South Atlantic 1.066∗∗∗ 1.826∗∗∗

(0.243) (0.383)
p = 0.00002 p = 0.00001

East South Central 1.104∗∗∗ 1.656∗∗∗

(0.245) (0.382)
p = 0.00001 p = 0.00002

West South Central 1.305∗∗∗ 2.172∗∗∗

(0.274) (0.381)
p = 0.00001 p = 0.000

Mountain 0.973∗∗∗ 1.634∗∗∗

(0.232) (0.385)
p = 0.00003 p = 0.00003

Pacific 0.750∗∗∗ 2.116∗∗∗

(0.205) (0.381)
p = 0.0003 p = 0.00000

Controls YES YES YES YES YES YES
State FE YES YES YES / / /
MSA FE / / / YES YES YES
Month FE YES YES YES YES YES YES

Observations 1,519 1,519 1,519 6,727 6,727 6,727
Adjusted R2 0.715 0.717 0.716 0.691 0.695 0.696
First stage F-test 144.72∗∗∗ 90.74∗∗∗

Wu–Hausman test 1.5 30.26∗∗∗

Notes: Robust standard errors reported in parentheses, and p-values from two-sided t-tests are listed under standard errors (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.). The
definition of geographical divisions can be found in the U.S. Census Bureau [56]. Coefficient for each region corresponds to the coefficient for the interaction term
between “recovery rate of onsite workers” and that region. All models include the same set of control variables and fixed effects as presented in Columns (2) and
(4) of Table 1. The full results are reported in Supplementary Table S8 and S9.

18



Pr
e-p

rin
t

Table 3: First-stage results of IV regression: estimating the effect of percentage of suitable remote
workers on the recovery rate of onsite workers

Dependent variable: recovery rate of onsite workers

State-month MSA-month

(1) (2)

Percentage of suitable remote workers −2.279∗∗∗ −0.240∗∗∗

(0.189) (0.025)
p = 0.000 p = 0.000

Reopening status −0.201 1.000∗∗∗

(0.232) (0.148)
p = 0.388 p = 0.000

GDP per capita (in thousand dollars) −1.013 2.064∗∗∗

(1.048) (0.660)
p = 0.335 p = 0.002

Unemployment rate −0.962∗∗∗ −1.240∗∗∗

(0.080) (0.048)
p = 0.000 p = 0.000

Transit service recovery rate 0.107∗∗∗ 0.034∗∗∗

(0.016) (0.005)
p = 0.000 p = 0.000

Transit fare 1.422∗∗∗ 0.557∗∗∗

(0.397) (0.152)
p = 0.0004 p = 0.0003

COVID cases per 1000 people −0.083∗∗∗ −0.035∗∗∗

(0.008) (0.004)
p = 0.000 p = 0.000

Vaccinations per person in the past 3 months 2.728∗∗∗ −0.929∗∗∗

(0.523) (0.248)
p = 0.00000 p = 0.0002

Vaccinations per person over the past 3-6 months 2.617∗∗∗ 1.263∗∗∗

(0.368) (0.222)
p = 0.000 p = 0.000

Vaccinations per person over the past 6-9 months 2.090∗∗∗ 0.641∗∗∗

(0.349) (0.236)
p = 0.000 p = 0.007

Net migration rate 0.227 0.045
(0.170) (0.073)

p = 0.181 p = 0.538
ln (population in millions) 59.337∗∗∗ 53.086∗∗∗

(12.673) (6.162)
p = 0.00001 p = 0.000

State FE YES /
MSA FE / YES
Month FE YES YES

Observations 1,519 6,727
Adjusted R2 0.908 0.842

Note: Robust standard errors reported in parentheses, and p-values from two-sided t-tests are listed under standard
errors. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure Legends542

Figure 1: Relationships between the recovery rate of onsite workers and the recovery
rates of VMT and transit ridership. a and b, Recovery rates of onsite workers plotted against
VMT and transit ridership, respectively, with samples aggregated at the state level (for VMT) and
the MSA level (for transit ridership). The correlation coefficient r and the slope of the best-fit line β

are provided, along with the significance level from two-sided t-tests. The p-values from two-sided
t-tests are smaller than 0.01 for r and β in all plots (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01). The color
represents the percentage of transit commuters, while the size of each point is proportional to the
population of the state or MSA. Notably, regions with a higher percentage of transit commuters
generally exhibit a lower recovery rate of onsite workers. c and d, Recovery rates of onsite workers
plotted against VMT and transit ridership, respectively, with samples aggregated at the month-year
level. Colors represent different time periods, illustrating that later time periods tend to have higher
recovery rates of onsite workers, VMT, and transit ridership. The significantly positive values of r
and β in all plots indicate a positive correlation between the recovery rate of onsite workers and the
recovery rates of VMT and transit ridership, both spatially and temporally.

Figure 2: Effects of the recovery of onsite workers on the recovery rates of VMT and
transit ridership over time. The markers denote the coefficient of onsite worker recovery for
predicting VMT (red squares) and transit ridership (green circles) across various year-quarters (see
Methods for model details). The error bars represent the 90% confidence intervals. The dashed
lines represent the trends of the effects. N = 1,519 (VMT) and 6,727 (transit ridership). The model
includes the same set of control variables and fixed effects as presented in Columns (2) and (4) of
Table 1. The full results are reported in Supplementary Tables S10 and S11.

Figure 3: Marginal effect of remote work on the reduction of on-road CO2 emissions
by state and that on the reduction of transit fare revenues by MSA. These two graphs
show the reduction in monthly on-road CO2 emissions by state (a) and the reduction in monthly
transit fare revenues by 50 most populated MSAs (b) caused by a 1-percentage-point increase in
the number of onsite workers. These estimates are calculated based on the effects of remote work
on VMT and transit ridership, as estimated from the 2SLS models with sample sizes of N =1,519
(VMT) and 6,727 (transit ridership). The bars represent the point estimates, while the orange lines
denote the 95% confidence intervals.
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